THE SOLUTION OF THE SECOND FUNDAMENTAL PROBLEM OF THE THEORY OF ELASTICITY FOR A PLATE WITH A DOUBLY SYMMETRIC TWO-CUSP CUT \dagger

N. A. IVAN'SHIN and Ye. A. SHIROKOVA

Kazan'
(Received 15 May 1995)
As an extension of a previous paper [1], devoted to solving the first fundamental and mixed problems for a plate with a doubly symmetric two-cusp cut, the second fundamental problem for a plate with the same cut is solved by the same method. © 1997 Elsevier Science Ltd. All rights reserved.

1. THE SOLUTION PROCEDURE

The second boundary-value problem for an unbounded region D consists of finding two functions that are analytic in $D \backslash\{\infty\}$ [2]

$$
\begin{equation*}
f(z)=\Gamma z-\frac{X+i Y}{2 \pi(1+x)} \ln z+\frac{a}{z}+\ldots, \quad g(z)=\Gamma^{\prime} z+\frac{x(X-i Y)}{2 \pi(1+x)} \ln z+\frac{a^{\prime}}{z}+\ldots \tag{1.1}
\end{equation*}
$$

where Γ, Γ^{\prime} and $X+i Y$ are the known constants. The boundary condition has the form

$$
\begin{equation*}
\left.\left\{x f(z)-z \overline{f^{\prime}(z)}-\overline{g(z)}\right\}\right|_{z=z(t)}=2 \mu(u(t)+i v(t)) \tag{1.2}
\end{equation*}
$$

where $z=z(t), t \in[0, l]$ is the equation of the boundary curve ∂D. We will assume that $u^{\prime}(t)$ and $v^{\prime}(t)$ are Hölder's functions.

We will change to the function $z(\zeta)$, which conformally maps the region $E^{-}=\{\zeta=\xi+i \eta,|\zeta|>1\}$ into D with corresponding $z(\infty)=\infty$ and differentiate both sides of equality (1.2) with respect to t. We obtain the boundary condition

$$
\begin{gather*}
\left.\left\{x \overline{\Phi(\zeta)} \overline{z^{\prime}(\zeta)}-\overline{z^{\prime}(\zeta)} \Phi(\zeta)+\overline{z(\zeta)} \Phi^{\prime}(\zeta) \zeta^{2}+\Psi(\zeta) z^{\prime}(\zeta) \zeta^{2}\right\}\right|_{\zeta=e^{i \theta}}=Q(\theta) \tag{1.3}\\
Q(\theta)=\left.2 i \mu\left[u^{\prime}(t)-i \nu^{\prime}(t)\right]\right|_{t=t(\theta)} e^{i \theta}\left|z^{\prime}\left(e^{i \theta}\right)\right|, \quad \theta \in[-\pi, \pi] \tag{1.4}
\end{gather*}
$$

where the functions $\Phi(\zeta)=f(z(\zeta))$ and $\Psi(\zeta)=g^{\prime}(z(\zeta))$ are analytic in E^{-}.
If $q(\zeta)=z^{-}\left(\zeta^{-1}\right)$ and $r(\zeta)=z^{-1}\left(\zeta^{-1}\right)$ are meromorphic in E, we can restore the meromorphic functions

$$
\begin{equation*}
K_{j}(\zeta)=(-1)^{j} x \Phi(\zeta) z^{\prime}(\zeta)-r(\zeta) \Phi(\zeta)+q(\zeta) \Phi^{\prime}(\zeta) \zeta^{2}+\Psi(\zeta) z^{\prime}(\zeta) \zeta^{2}, \quad j=1,2 \tag{1.5}
\end{equation*}
$$

using the boundary values $\operatorname{Re} K_{1}(\zeta)(\operatorname{Re} Q(\theta))$ and $\operatorname{Im} K_{2}(\zeta)(\operatorname{Im} Q(\theta)),(1.3)$ and (1.4). Further, $\Phi(\zeta)$ and $\Psi(\zeta)$ are restored by $K_{j}(\zeta)$ (1.5).

2. SOLUTION OF THE PROBLEM

The function

$$
\begin{equation*}
z(\zeta)=\frac{i\left(b^{2} \zeta^{2}+1\right)}{\zeta\left(b^{2}-1\right)}+\frac{\zeta\left(b^{2}-1\right)}{i\left(b^{2} \zeta^{2}+1\right)}, \quad b>1 \tag{2.1}
\end{equation*}
$$

maps E^{-}into D. Using Eq. (1.5), we obtain

$$
2 x \Phi(\zeta) z^{\prime}(\zeta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \overline{Q(\theta)} \frac{\zeta+e^{i \theta}}{\zeta-e^{i \theta}} d \theta+A-\frac{2}{\zeta^{2}}\left[\frac{i}{b^{2}-1} \bar{\Gamma}-\frac{i b^{2}}{b^{2}-1} \overline{\Gamma^{\prime}}\right]-
$$

\dagger Prikl. Mat. Mekh. Vol. 61, No. 2, pp. 350-351, 1997.

$$
\begin{equation*}
-\frac{x(X+i Y)}{\pi(1+x) \zeta}-2 \bar{B} \frac{\zeta-i b}{1+i b \zeta}-2 \bar{C} \frac{\zeta+i b}{1-i b \zeta}-2 \bar{D}\left(\frac{\zeta-i b}{1+i b \zeta}\right)^{2}-2 \bar{E}\left(\frac{\zeta+i b}{1-i b \zeta}\right)^{2} \tag{2.2}
\end{equation*}
$$

Requiring that $\Phi(\infty)=\Gamma$, we have

$$
\begin{equation*}
A+\frac{2 i}{b} \bar{B}-\frac{2 i}{b} \bar{C}+\frac{2}{b^{2}} \bar{D}+\frac{2}{b^{2}} \bar{E}=\frac{2 x i b^{2}}{b^{2}-1} \Gamma-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \overline{Q(\theta)} d \theta \tag{2.3}
\end{equation*}
$$

By (1.5)

$$
\begin{equation*}
\Psi(\zeta)=\left[\zeta^{2} z^{\prime}(\zeta)\right]^{-1}\left[K_{1}(\zeta)-x \Phi(\zeta) z^{\prime}(\zeta)+r(\zeta) \Phi(\zeta)-q(\zeta) \Phi^{\prime}(\zeta) \zeta^{2}\right] \tag{2.4}
\end{equation*}
$$

where the coefficients of $(\zeta \pm i b)^{-2}$ and $(\zeta+i b)^{-1}$ must vanish, which yields four equations

$$
\begin{align*}
& D\left(b^{2}-1\right)-i \Phi(i b) b^{2} / 2=0, \quad E\left(b^{2}-1\right)-i \Phi(-i b) b^{2} / 2=0 \tag{2.5}\\
& B+2 i b D+b \Phi(i b)=0, \quad C-2 i b E-b \Phi(-i b)=0
\end{align*}
$$

Using formula (2.2), we obtain from (2.3) and (2.5) a system of five equations in five unknown constants

$$
\begin{align*}
& A+\frac{2 i}{b} B-\frac{2 i}{b} C+\frac{2}{b^{2}} \bar{D}+\frac{2}{b^{2}} \bar{E}=\frac{2 x i b^{2}}{b^{2}-1} \Gamma-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \overline{Q(\theta)} d \theta \\
& D-b \beta\left[A-2 i \delta \bar{C}+2 \delta^{2} \bar{E}\right]=b \beta R_{+}(b) \\
& E-b \beta\left[A+2 i \delta \bar{B}+2 \delta^{2} \bar{D}\right]=b \beta R_{-}(b) \tag{2.6}\\
& B+2 i b D+2 i \beta\left(1-b^{2}\right)\left[A-2 i \delta \bar{C}+2 \delta^{2} \bar{E}\right]=-2 i \beta\left(1-b^{2}\right) R_{+}(b) \\
& C-2 i b E-2 i \beta\left(1-b^{2}\right)\left[A+2 i \delta \bar{B}+2 \delta^{2} \bar{D}\right]=2 i \beta\left(1-b^{2}\right) R_{-}(b)
\end{align*}
$$

Here

$$
\begin{aligned}
& \beta=\frac{b^{3}\left(1+b^{2}\right)^{2}}{4 x\left(b^{4}+1\right)\left(b^{4}+b^{2}+1\right)}, \delta=\frac{2 b}{b^{2}+1} \\
& R_{ \pm}(b)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \overline{Q(\theta)} \frac{ \pm i b+e^{i \theta}}{ \pm i b-e^{i \theta}} d \theta-\frac{2 i}{b^{2}\left(b^{2}-1\right)}\left(\bar{\Gamma}-b^{2} \overline{\Gamma^{\prime}}\right) \mp \frac{x(X+i Y)}{\pi i b(1+x)}
\end{aligned}
$$

After determining the constants, the functions $\Phi(\zeta)$ and $\Psi(\zeta)$ can be obtained from (2.2) and (2.4) respectively. Now we reconstruct $f(z(\zeta))$ and $g(z(\zeta))$

$$
f(z(\zeta))=\int_{1}^{\zeta} \Phi(\zeta) z^{\prime}(\zeta) d \zeta+f(z(1)), \quad g(z(\zeta))=\int_{1}^{\zeta} \Psi(\zeta) z^{\prime}(\zeta) d \zeta+g(z(1))
$$

The function $z(\zeta)$ is the same as in (2.1), $f(z(1))$ and $g(z(1))$ are the quantities that satisfy the equation

$$
x f(z(1))-\overline{g(z(1))}=2 \mu\left[u\left(t_{0}\right)+i v\left(t_{0}\right)\right]+z(1) \overline{\Phi(1)}
$$

and t_{0} is the value of the initial parameter corresponding to the point $z=z(1)$.

REFERENCES

1. IVANSHIN, N. A. and SHIROKOVA, Ye. A., The solution of the problem of the theory of elasticity for a plane with a doubly symmetric two-cusp cut. Prikl. Mat. Mekh., 1995, 59, 3, 497-501.
2. MUSKHELISHVILI, N. I., Some Furdamental Problems of the Mathematical Theory of Elasticity. Nauka, Moscow, 1976.
